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SCALE MODELING OF REINFORCEDCONCRETE
CATEGORY I STRUCTURESSUBJECTEDTO SEISMIC LOADING

by

Richard C. Dove and Joel G. Bennett

ABSTRACT

The laws that govern the scale-modelrequirementsfor
reinforcedconcrete Category I structuresover a full range
of seismic loading extendingfrom the elastic through the
inelastic ranges of responseare developed. Three types
of scaltng are then examined. The third type, called ‘Qfi
scaling In this report, Is the most useful for tailoring
structuralmodels to existing selsmtc test facllltles.
Finally, the way in which the three types of commonly used
damping (VISCOUS,structural,and Coulomb) scale In these
models Is derived.

INTRODUCTION

The Selsmlc Category I Structures Program currently being carried out at

the Los Alamos Nattonal LaboratoryIs Intended to provide experimentallyde-

termineddata on the structuralbehavior of very large, reinforcedconcrete

structureswhen subjected to seismic loads which are larger than those con-

sidered In the structure’sortglnal design.

Unfortunately,these Category I structuresare so large that the possibil-

ity of seismicallytesting the prototype structuresunder controlled

conditions is essentiallynonex~stent. As a result, setsmic experimentson

scale models are being used in this program.

The use of scale models for the llnear/elastlcregion des~gn of concrete

structuresIs a well-establishedand growing practice. The Commentaryon

Buildlng Code Requirementsfor ReinforcedConcrete (ACI 318-77)1 states:



‘The code permits model analysis to be used to supplement

structuralanalysis and design calculations. Documentation

of the model analysis should be providedwith the related

calculations. Model analysis is most effectiveas a tool

for predicting the behavior of actual structureswhen per-

formed by an engineer or architect having experience in

this technique.”

In Chapter 19 (Shells and Folded Plate Members) of the 1977 Building Code

Requlrements,2model analysis is specificallydiscussed;Section 19.2.6.1

states:

“Analysesbased on results of elastic model tests approved

by the Buildlng Official shall be cons~deredas valid

elastic analyses.U

In the discussionof this section, the reader Is cautioned:

“Many factors enter Into model tests besides shape and

direct scale. Thus, the Building Official should accept

results of model tests In lleu of mathematicalanalysts only

when the model tests have been performed under the dlrec-

tlon of a recognizedexpert In this area of structural

engineering,Includingexpertise In the theory of models

and similitudeof model and prototype.”3

In Australia, the current Concrete Code permits design based on model
4

analysiswithout supplementarycalculations.

lt Is clear that the use of models for the design and analysis of rein-

forced concrete structuresin the elastic load range is well accepted. Al-

though the use of models to design and analyze reinforcedconcrete structures

loaded Into the inelastic range ‘ISmore complicatedand more expensive, the

methodology is well known, and numerous ultlmate load tests have been success-

fully carried out. References3 and 5 contain Informationon reinforcedcon-

crete models for Inelasticand ultimate load studies. Subjects discussed in

detail Include:

1. required scaling laws

2. material selection,includingmodeling of the reinforcement

3. test techniques



4. accuracy of model tests, and

5. costs

Studies reportedon Includemultistory bulldlngs,bridges, pressure ves-

sels, dams and many of the usual structuralelements.

When reinforcedconcrete models are used to investigatetnelastlcbehavior

and/or ultimate load capacity under dynamic load conditions,the problem is

further complicatedas compared to quasistatlcloading. Here again, however,

the methodology is well established.6 The ACI special publicationtitled

Dynamic Modellng of Concrete Structures,71s, as the title suggests,devoted

exclusivelyto this subject and, as Its publicationdate (1982) lnd~cates,

there Is a rapid growth of interest in this area. A large number of tests

have been conducted on reinforcedconcrete models subjectedto air blast,

ground shock, and missile Impact loading. References7 and 8 both report on

this type of test, and many more examples are reported in the classified

literature. It Is interestingto note that facilitiesfor blast or impact

loading of models are relativelysimple to construct on an ad hoc basis.

Stmulated seismic loading is no more complicated,In theory, than other

types of dynamic loading (such as alr blast or ground shock); but, in fact, a

facillty that will simulate seismtc loadlng Is more dlfflcult and expensive to

constructand, as a result, there are a very ltm~ted number of seismic simula-

tion facilities that will accommodate larger scale models. Reference9 con-

tains a list of seismic test facllltles In the US that are potentiallyuseful

for testing structuralmodels, togetherwith a discussionof the character-

istics and limitationsof these factlltles.

Papers by Clough and Niwa and by Godden* gtve examples of concrete struc-

tures tested on the seismic simulatorat the Universityof Californiaat

Berkeley. In our researchon reinforcedconcretemodels of Category I nuclear

power plant structureswe have used the seismic simulationfacility at the

ConstructionEngineeringResearch Laboratory,Champaign, Illlnois. This fa-

cility is the largest,both in applied force and maximum test item wetght,

available in the US. Further, the control system on this shaker has recently

(January 1984) been significantlyupgraded.

*BOthpaperscan be found in Ref. 7.



There are a number of large setsmlc simulationtest facilities In Japan,

Includingthe world’s largest facility (the Nuclear Power EngineeringTest

Center, NUPEC, facility at Tadotsu Town on Shikoku Island). Most Japanese

facllttlesare listed and their characteristicsdiscussed In Ref. 10. Refer-

ences 11-16 are Indlcatlveof Japanese actlvlty In the seismic testing of con-

crete models.

As the preceding review demonstrates,there Is a great deal of relevant

researchon which a scale model program for the seismic response of Category I

structurescan build. However, the use of scaled models for studying the sels-

mlc responseof very large reinforcedconcrete structuresloaded Into the in-

elastlc region remains a challengingproblem. First of all, since the proto-

type structuresare very large and the seismic simulationtest facilitiesare

relativelysmall, the requireddlmenslon scale factor Is large. It Is sad,

but true, that experience teaches that the larger the scale factor, the more

difficult It Is to constructa true scale model.

It Is also true that modeling for dynamic experimentsIs more dlfflcult

than modeling for static experiments;time, all time dependent inputs (accele-

ration and velocity for example),and time dependent properties(VISCOUS

effects for example) must be properly scaled in dynamic experiments.

When models are used to study structuralresponse In the Inelastic region,

the materials used In the constructionof the model must have the required

similarityto the prototypematerials over the entire load range; It is @

sufficientto model elastic modulus as Is often done when only elastlc response

Is to be modeled. As a result, models for the study of reinforcedconcrete

structures,loaded Into the inelasticregion,must be constructedusing the

same materials (concreteand steel) as are used In the prototype. Even when

this Is done, there will be differencesbetween the model and prototypemate-

rial behavior in the Inelastic region because of our Inabilityto completely

scale crack formationand growth, bonding mechanisms,etc.

These difficultiesdo not Invalidatethe use of model studies to aid In

our understandingof the inelastic responseof reinforcedconcrete structures;

however, ‘ifvalid results are to be obtained, It Is essential that these scal-

ing dtfficultlesbe recognizedand their effects mlnlmlzed and/or accounted

fore

In the material which follows, the scaling laws are deve’

detail so that assumptionsand choices based on judgment can

4

oped tn some

be clearly



recognizedand their effects discussed. The scallng laws developedare then

used to design a reinforcedconcretemodel of a Category I structure.

Finally, how scallng Is affected by various types of damping (VISCOUS,

structural,and Coulomb) is discussed.

Developmentof the Scallnq Laws

The typical structureof Interest Is shown In Fig. 1. The terms used In

the developmentare defined as follows.
..
x- responseaccelerationat any point on the structure.

E - the symbol used to indicate the material force vs deformationcharac-

terlsttc;@ a constant over entire loadlng region of Interest.

M- the mass of the structureor any mass attached to the structure.

h- any lineardlmenston. Since only one term ts used, ~ geometricdis-

tortion Is allowed.
..
Y- the Input, or drlvlng, acceleration.

t- time; necessary since

of time.

F - force; any force, Inc”

forces.

both Input and

udlng gravltat’

1

r
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Fig. 1. Idealizedelevation view of a typical structureof Interest.
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Material propertiesthat govern damping forces (viscous,structural,

or Coulomb) have deliberatelybeen omitted and hence damping forces are ne-

glected. Th~s has been done to simplify the establishmentof the acceleration,

time, mass, and force scales; however, followingthis simplifieddevelopment

damping will be addressed.

For this system the basic functionalequation is

~ = + (E, M, h, v, t, F). (1)

Equation (1) can be reduced to a dimensionlessfunctionalequatfon as follows.

All of the terms in Eq. (1) can be expressed using three fundamentaldi-

mensions

(F - force, L -

Thus, ; - LT
-2

E - FL
-2

M- FT2L-

length,T - time).

h-L
. .
- LT

-2
Y
t -T

F-F

Equation (l), with seven quantities involving3 fundamentaldimensions,can

be reduced to a dimensionlessequation containing4 dimensionlessgroups

(7 -3 = 4, the so called Buckingham ‘w’ theorem). Thus,

These dimensionlessgroups are known as ‘m’ terms and defining I/~ as

‘1’ Eh2/M~ as u2, etc. we can write

‘1
= +’ (lr2,lr3,fi4) “

(2)

(3)



Scale model theory can now be easily stated.

‘Since the same functionalequation (Eq. 3) governs both the model and the

prototype,we see that if we design and test the model so that W2 of

the model (W2 ) equals a2 of the prototype (W2 ) t.e.,
m P

‘2m = ‘2P ;
and, likewise

and U4 = -4 then ml 17
*3m = ‘3 ‘ must equal ml .“

P m P m P

These conditions

(fi2 = U2 ) , etc.,
m P

establishthe required scales (i.e. the scaling laws). Writing these design

and operating conditionsout we have

($)m=($)pg

(*)m=(%)P’ and

(;)m=(;)p9

where m and p refer to model and prototype respectively. Each of the three

can be rearrangedin the followingway (using Eq. (4) as an example),

(4)

(5)

(6)

(7)

We now define scales as follows. Let NE, the basic material stiffnessprop-

erty scale, be E /E ; let N~, the length scale, be h /h etc. Then Eq. (7)
pm p m’

becomes

7



‘E =!+.

‘h

(8)

In the same way, using Eqs. (5) and (6), we can write all of the required scale

relationships.

‘h = N..N2,yt and (9)

‘F = N N...My (lo)

These three equationsare the scaling requirements(or laws) that dictate how

the model must

the prediction

(if, =
m

be designed and operated. If these scaling laws are satisfied

equation,

U,p)$ yields X = N..~ o
P ym

Since the six scales (NE, NM, etc.) are related by only three equations,

any three scales can be selected arbitrarily;hence, in theory, the required

scaling can be accomplishedin any number of ways. In fact, even in this sim-

ple case, the choice of which scales are to be ‘arbitrarily’selected and what

values are assigned is very importantand will determinewhether or not the

model can be constructedand tested.

In general, the length scale (Nh) is dictated by the size of the proto-
type and the maximum size of the model that can be tested In an existing test

facility or a facility to be constructed. Without assigninga numerical value

at this point, let us agree that Nh will have to be assigned a specific
value, say Fh.

Rememberingthat the term E does not representa constant but, rather, the

entire shape of the stress vs strain diagrams of all of the materials used in

the model and the prototype,we can anticipatethat there is little chance of

selectingmodel materials that are different from the prototypematerialswhile

still retainingthe requiredsimilarityover the entire loading range. There-

fore, when models are designed to predict prototype behaviorwhen the materials

8



are loading into their inelasticregions, it is almost always necessaryto use

the same materials in the model as are used in the prototype (steel reinforce-

ment and concrete, in this case). Hence, NE = 1.*

The remainingchoice of the scale to which we will assign a value is not

so clear cut. Let us consider several possibilities.

Case I. Let NM =~~. This would appear to be a logical choice

since having already decided to use the same materials in model and prototype,

their densitieswill be equal and all masses will be scaled by volume (i.e.

L3), hence Nm =1~. With these three choices (Nh = ~h, NE = 1, and NM = N;)

the remaining required scales become

N +.. =
Y Fih

‘t =
~h , and

fi2
‘F = h “

The first two requirements(the accelerationand time scallng)appear to pose

no special problems. If the prototype Is to be subjected to a peak accele-

ration of 1 g, the peak accelerationapplled to the model can (given an appro-

priate test facility)be adjusted to (Nh x 1) g, i.e.,

. .

N 5 “.. =
Y y ‘ ‘r ‘m = Iih x Vp ...

m

*Even when steel and concrete are used in the models and the elastic modulus
of the model concrete is the same as the prototypeconcrete, it is doubtful if
the desired similarityover the entire loading range is achieved--itis simply
the best we can do.



Further, if the prototype Is to be subjectedto a certain seismic history

lastlng 12 seconds, that seismic history can be time scaled by a factor of N+

so that for the model test the duration of the test signalwould be 12/~h s.;

The third scale requirement,NF = ~~, is troublesome. In the problem

being consideredthe only external forces that act on the system are the gravi-

tational forces and it is clear that if the model is tested in the same gravi-

tationalfield (the Earth’s) as the prototype,then the gravity forces (weights)

will be scaled as the masses are scaled

Fgravity
(I.e. Fgravitym = ~3 )9

h

Insteacjof being scaled by a factor ~~.

The type of scalingjust discussed (to be referred to as Case I In this

paper) Is widely used in sp~te of this distortion. The assumption is that the

distortionof gravity forces has little effect upon the responseof the model.

We can be somewhatmore specific In our thinking about the effect of this dis-

tortion if we realize that in this system gravity forces affect (1) the

vertical stresses in the structure,(2) the overturningmoment when the struc-

ture Is displaced from equlllbrlum,(3) the period of free vibration (P) and

(4) any Coulomb friction effects, since these depend on normal forces. We now

see that If the gravitationalforces are small compared to other forces (ln-

ertla and restoringforces), the vertical stress field and the overturning

moment may not be greatly altered by distortingthese forces. FurthermoreIf

the system is ‘stiff,’ the Influenceof gravity on the period of vlbratlon

will be small, and finally If there are no Coulomb effects (presumablybecause

the coefficientof friction Is small or no slippage occurs), distortinggravity

forces has no effect. Calculationsshow that, for the structuresof Interest

In this study (low profile, thick walls, llm~ted number of stories),the verti-

cal stress, overturningmoment, and natural period are not greatly affected by I

I

*Think~ng in terms of frequency (f) content, all Componentsof the s19nal
applied to the model will be frequency shifted up by a factor of Nh since
the frequency scale Nf is the reciprocalof the time scale Nt.

10 I
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gravitationalforces. How importantCoulomb damping may be in affectingthe

responseof cracked concrete is unknown.

Case II. Let NY = 1. This too appears to be a logical choice since

testing the model in the same gravitationalfield as affects the prototype

suggests that ~m = ~ . With these three choices
P

(Nh = iih, NE = 1, and NY= 1)

the remainingscales become

‘t
=dNh ,

~2
‘F = h , and

~2
‘H = h “

Now the problem is that, unless we find some way to adjust (increase)the den-

sity of the model material, the distributedmass will be scaled as NM = N;

(as before) rather than the required value of ~~. The usual way to make
this adjustment is to attach lumpedmasses to the model.* There are several

difficultieswith this approach. (1) Attached lumpedmasses can never truly

model distributedmass even if the total mass is correct; centers of gravity

of componentsand hence moments are changed. (2) Stress distributionis af-

fected. (3) Attachmentcan be difficult under severe dynamic load conditions.

(4) As the model becomes smaller (larger~h), relativelymore mass must be

added, since the mass that must be added is directly proportionalto Nh.

Case III. LetNU=Q. Q representseither a constant or a function of

Rh, and it is intend~d that l/Nh c Q < 1. For this case the scales are

*some authors have suggested using heavy aggregatemater’Ialfor the model
crete, but the fact is that, even if this modificationdid not change the
material properties,(NE), not enough adjustmentcan be made except when
the models are very large, i.e.,Nh is small.

con-

11



‘h = ih,

NE = 1,

N.. = Q,
Y

‘M. @Q

Nt =~Nh/Q, and

–2
‘F = ‘h”

Clearly this is a case somewhat intermediateto Cases I and 11, and as You

would expect, all of the difficultiesthat were discussed for both of the first

two cases will apply to this case. Gravity forces in the model will be dfs-

torted, as In Case I, but the amount of distortionwill depend upon the value

selected for Q. Mass will still have to be attached to the model, as In Case

11, but the amount will depend upon the value selected for Q. Perhaps the

most importantfeature of Case III modeling is that the value of the accelera-

tion scale can be selected to match the capabilitiesof the model test facil-

ity. In designing and testing small models, the authors have found that it is

usually not convenientto use accelerationscales of either l/Nh (Case I) or

unity (Case II).

Applicationof the Scallnq Laws to the Design and Testing of a Typical

Category 1 Structure

For the purpose of this example,we begin by assumtng that the prototype

Category I structurehas a wall thickness (hp) of 30 inches and all other

dimensionsare proportionedaccordingly. Because of cost, size, and weight

Iimitatlons,we decide that the model structurewill have a wall thickness

(hm) of 1 Inch; hence, Nh = 30. Because we wish to Investigatethe be-
havior of the prototypewhen the seismic Input Is large enough to produce in-

elastic deformationof the structure,we will use steel reinforcedconcrete

for the model

behavior over

12

in an attempt to obtain the desired similarityof material

the entire loading range; hence, NE = 1.



We now assume the largestpeak accelerationvalue to which the prototype

will be subjected (~pK) is 1 g. A study of the available seismic test

facility’scapabilitiesindicatesthat for the mass of the model we are con-

sidering,togetherwith the mass of all the necessarymounting hardware,the

peak accelerationvalue that can be applied to the model (~~K ) while still
maintaininggood pulse shape (or frequencycontent) control is 5 g. Therefore

we select N = 1/5, I.e., Q = 1/5.
Y

This will be a Case 111 model and the other required scales are

2

‘M
= ~h2/Q = ~ = 4500

‘t ‘@=&=1202’
~2

‘F = h = 302 = 900.

These scaling laws are now used to design and test the model. First, the

model is constructedas a l/30-scaleversion of the prototype. Second, the

amount of mass that must be added to the model to achieve the required mass

scale is computed.The mass of the model desired is

M .“%,
m.d. ’14

The mass of the prototype (Mp) can be computed from the prototype volume and

density, but an easier method (assumingthe model has been fabricated)is to

write M = Mm, x l:,
P

where Flm,is the mass of the model as fabricated
without any added mass. Then the mass to be added to the model is

73

I



= PIm~ - #lm,,‘A . .

Mm,iihz
‘A = NM - ‘m’ ‘ ‘r

~3

‘A ()
= Mm, ~ -1 . (11)

‘n

For the example being considered (Nh = 30, NM = 4500), this reduces to
MA = 5 M ,. This added mass should, of course, be uniformlydistributed

throughout!’the model since Its purpose Is to properly scale the effect of the

structure’sdistributedmass. In general, this will not be possible,and In

the example being considered,the added mass will be locatedat each floor

level as shown In Fig. 2. Since the locationof this added mass has consider-

able effect on the system’sdynamic response,It Is Importantthat the value

substitutedfor ?4m,(the models mass) be the effective value of mass (Mme,)

lumped at the locationwhere the added mass Is to be attached. This value of

lumpedmass, which Is dynamicallyequivalentto the distributedmass It re-

places, can be computed (using energy methods or Raylelgh’smethod) or (assum-

ing the model Is available)from measured values of the structure’snatural

frequencywith and without added mass.

The appropriatetest signal Is now determinedby amplitudeand time scal-

ing the selsmlc history of Interest by the requiredaccelerationand time

scales. Assuming that the 1940 El Centro N-S seismic history, edited to 16 s

and one g peak acceleration,Is chosen as the prototypeexcitation,the model

test signal Is obtained by amplitude scaling this record by NY = 1/5, which

produces a peak accelerationof 5 g’s, and by time scaling the record by Nt

= 12.25,which produces a record of 1.306 s duration and containingfrequency

componentsthat have been increasedby a factor of 12.25.

Investlqatlonof the Effect of Damping on ReinforcedConcrete Models

In the precedingdiscussion,the effect of damping on a scale model’s be-

havior was deliberatelyneglected because Its Inclusioncomplicatesthe analy-

sis but does not affect the establishmentof the Importantscaling laws. Now,

14
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Fig. 2. Method of attachingmass to a typical structure.

however,we are obligated to Investigatehow damping forces should be scaled,

whether they can be scaled, and, If not, what Is the effect of this distortion.

In this dlscusslon,damping Is used to mean energy loss during CYCIIC

loadlng. Three damping mechanisms are considered:(a) VISCOUS, or frequency

dependent,damping, (b) structural,or solid, damping, and (c) Coulomb, or dry

frlctlon,damping. For these three types of damping, the damping forces are

defined as follows:

Viscous damDlnq force; F = v VA/b in which
v Is the material vis~ous damping coefficient,

V Is relative velocity between surfaces,

A Is surface area, and

b Is perpendiculardistance between the surfaces.

Note that the usual system. or element~ VISCOUS damping coefficient(c), for

which F = c V, is related to v as c = vA/b. A and b are, of course,

not mat~rlal propertiesand hence c Is not a material property. Also note

that the widely used VISCOUS damping ratio, c = c/cc = c/2fi, in which

cc is the ‘critical’damping equal to 2fi, where K Is stiffnessand M Is

mass, is not a material property.

15



>tructuraldamping force; FB = puA/b* in which
B is the material structuraldamping coefficient,

u is relativedisplacementbetween surfaces,and

A and b are as previouslydefined.

Note that the usual system, or element, structuraldamping coefficient

(v), for which Fp = vu, is related to (3as v = f3A/b. Obviously,v ‘IS not a

material property. In structuraldamping calculationsthe damping force Is

also often written as F = v’KU and V’
B

is called a ‘proportional”structural

damping coefficient. Obviously V’ = v/K, where K is the element stiffnessand,

again, Vi is not a material property.

Coulomb damt)inqforce; F = ~FN in which

~ is the Coulomb damping’’coefficient,and

FN is the force normal to the surface on which slippingoccurs.

v is usually assumed to be a material property;that is, the value of

~ is assumed to be dependent upon the two materials in contact at the sliding

interface. Actually, V, and hence Fv, does depend upon surface geom-

etry. This may be of considerableimportancein scaling; however, in the anal-

ysis which follows, ~ will be taken as a material property and, hence, if the

same materials are used in the model and prototype,Vm = Y .
P

If we assume that by using the same material for model and prototype,all

of the basic material damping coefficients(v, (3,V) are the same in the model

and the prototype,we may write

=V,‘m
pm = p;, and

Vm = v .
P

Now the ratio of damping forces in the model to those in the prototype can be

written using the fundamentalequations for the damping forces and the scales

previouslydefined.

*Although the magnitude of structural,or solid, damping force (FP) is not
consideredto be velocity dependent,this type of damping is assumed to oppose
relative velocity,and the damping force exists only for relative velocities
greater than zero.

16



For viscous damping forces, F
v

F
vVA= mmm , and

‘m bm

F VVA
=J?_J?_E.

‘P - p

Dividingand noting that Vm = Vp,

F
+ . >>> , and

‘m mmp

substituting

bm = b /Np h’

Am = A /N 2,ph and

Vm = Vp/NyNt,*

we have

F
3
F = ‘yNtNh “
‘m

(12)

How this ratio of viscous forces compares to the required force scale (NF)

of N: previouslyestablisheddepends upon how the model has been scaled.
The ratios of viscous forces for the three modeling cases previouslydiscussed

are shown in Table I. Note that viscous damping forces are distorted In every

*The velocity scale (N~) is the accelerationscale (Ny) times the time
scale (Nt).

17



case; specifically,viscous damping forces in the models are too large (as

compared to the viscous damping forces in the prototype).

Proceedingin the same manner, we can write the ratio of the structural

damping forces involved,thus

‘g 2
Fn = ‘h - (13)

‘m

Equation (13) shows that structuraldamping is correctly scaled for all mode”

ing cases (see Table I).

How Coulomb damping forces (FP) are scaled depends upon how normal

forces (Fn) are scaled since Fv = v Fn and we have assumed that ‘VU is the

same in both model and prototype. Since in buildingsthe vertical normal

forces include gravity forces, and since gravity forces are only correctly

scaled (as N;), in Case II models we note that Coulomb damping forces are

only correctly scaled in Case 11 models. Since the vertical normal forces in

a structuredepend not only on gravitationforces but upon vertical inertia

forces and forces developed by flexure and since, in general,we do not know

the relativemagnitude of these forces, the distortionof Coulomb damping

forces in the other two modeling cases remains unknown. However,with Case I

and Case 111 models, the gravitationalforces are too small (as compared to

gravitationalforces in the prototype);hence we know that the Coulomb forces

wI1l also be too small In the model.

This analysis demonstratesthat the effect of scaling on damping Is under-

stood and can be accounted for provided that the nature of the damping forces

is known. This then is the problem with reinforcedconcrete,especiallywhen

loaded Into the inelastic range; the exact nature of the damping mechanism Is

unknown. If, as Is often assumed In analysis of structures,the damping is

structural,or solid damping, then damping forces are not distorted. Further,

if Case 11 scaling is used, neither structuralnor Coulomb damping forces are

distorted,and the viscous damping forces are distorted by a minimum amount

(the viscous forces in the model are too large by a factor of fi~’2).

18



TABLE I

DAMPING FORCE RATIOS

Type of Viscous Force Structural Force Coulomb Force
Modeling Ratio Ratio Ratio

F /F F /F F /F
‘P ‘m ‘p ‘m ‘P ‘m

Case I

Case 11

Case 111

Iih

Since the concept of viscous damping ratio, C, is used in most design

and analysis methods applied to Category I structures,*it is useful to re-

think the precedinganalysis of VISCOUS damping forces In terms of C.

Using the terms defined in the preceding paragraphs,

VA
g = 2b@”

Writing this expressionfor the model (subscriptm) and the prototype (sub-

script p) and dividing,we have

bm
5=%%
Cm Vm “ Am “ ~ “

K MmJ1

)

1/2
.

K
P

“q

Now if the model and prototypeare of identicalmaterials and V- = V_

(as was previouslyassumed), and we substitutescale definition we ~ave

cm Nh
~.1 )

1/2

tih iih2/Q

*C is used because of its conveniencein computations,not because designers
believe that the damping mechanism is viscous.
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or

Equation (14) tells us how the VISCOUS damping ratio, g, of two struc-

tures (model and prototype)will be related~ the damping Is VISCOUS. This

suggests that, If we build two structuresof different sizes (two different

scale models) and test and measure c on each one, we can compare the ratio

of measured results to the ratio predictedby Eq.(14) to investigatewhether

or not the damping is indeed VISCOUS.

For example,we might build and test 1/30 and l/10-scalemodels of a

Category I structureand design and test them so that the smaller structure Is

a Case II (Q=l), 1/3 scale (Nh = 3) model of the larger structure. Then

Eq. (14) would predict that the measured values of c would be related as

or

‘larger = 0.58 Csmaller,

if the damping Is viscous.

**Note that the area scale, NA = ~~; that the stiffnessscale, NK = NF/~h = ~~/~h

written as ii~/Q,we cover all

Q = l/~h and for a Case II model
= iih; and that when the mass scale, Nm, 1!
three model cases since for a Case I mode”

Q=l.
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